翻訳と辞書
Words near each other
・ "O" Is for Outlaw
・ "O"-Jung.Ban.Hap.
・ "Ode-to-Napoleon" hexachord
・ "Oh Yeah!" Live
・ "Our Contemporary" regional art exhibition (Leningrad, 1975)
・ "P" Is for Peril
・ "Pimpernel" Smith
・ "Polish death camp" controversy
・ "Pro knigi" ("About books")
・ "Prosopa" Greek Television Awards
・ "Pussy Cats" Starring the Walkmen
・ "Q" Is for Quarry
・ "R" Is for Ricochet
・ "R" The King (2016 film)
・ "Rags" Ragland
・ ! (album)
・ ! (disambiguation)
・ !!
・ !!!
・ !!! (album)
・ !!Destroy-Oh-Boy!!
・ !Action Pact!
・ !Arriba! La Pachanga
・ !Hero
・ !Hero (album)
・ !Kung language
・ !Oka Tokat
・ !PAUS3
・ !T.O.O.H.!
・ !Women Art Revolution


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

disintegration theorem : ウィキペディア英語版
disintegration theorem

In mathematics, the disintegration theorem is a result in measure theory and probability theory. It rigorously defines the idea of a non-trivial "restriction" of a measure to a measure zero subset of the measure space in question. It is related to the existence of conditional probability measures. In a sense, "disintegration" is the opposite process to the construction of a product measure.
==Motivation==
Consider the unit square in the Euclidean plane R2, ''S'' = (1 ) × (1 ). Consider the probability measure μ defined on ''S'' by the restriction of two-dimensional Lebesgue measure λ2 to ''S''. That is, the probability of an event ''E'' ⊆ ''S'' is simply the area of ''E''. We assume ''E'' is a measurable subset of ''S''.
Consider a one-dimensional subset of ''S'' such as the line segment ''L''''x'' = × (1 ). ''L''''x'' has μ-measure zero; every subset of ''L''''x'' is a μ-null set; since the Lebesgue measure space is a complete measure space,
:E \subseteq L_ \implies \mu (E) = 0.
While true, this is somewhat unsatisfying. It would be nice to say that μ "restricted to" ''L''''x'' is the one-dimensional Lebesgue measure λ1, rather than the zero measure. The probability of a "two-dimensional" event ''E'' could then be obtained as an integral of the one-dimensional probabilities of the vertical "slices" ''E'' ∩ ''L''''x'': more formally, if μ''x'' denotes one-dimensional Lebesgue measure on ''L''''x'', then
:\mu (E) = \int_ \mu_ (E \cap L_) \, \mathrm x
for any "nice" ''E'' ⊆ ''S''. The disintegration theorem makes this argument rigorous in the context of measures on metric spaces.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「disintegration theorem」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.